STUDY MODULE DESCRIPTION FORM			
Name of the module/subject Operation research and optimization theory	Code 1011105221011137646		
Field of study Profile of study (general academic, practical	Year /Semester		
Logistics - Part-time studies - Second-cycle (brak)	1/2		
Elective path/specialty Subject offered in: Chain of Delivery Logistics Polish	Course (compulsory, elective) obligatory		
Cycle of study: Form of study (full-time,part-time)			
Second-cycle studies part	part-time		
No. of hours	No. of credits		
Lecture: 16 Classes: 14 Laboratory: - Project/seminars:	- 4		
Status of the course in the study program (Basic, major, other) (university-wide, from another			
(brak)	(brak)		
Education areas and fields of science and art	ECTS distribution (number and %)		
the sciences	4 100%		
Mathematical sciences	4 100%		
Responsible for subject / lecturer: Responsible for subje	Responsible for subject / lecturer:		
dr Tomasz Brzęczek dr Bartosz Godziszewski	dr Bartosz Godziszewski		
email: tomasz.brzeczek@put.poznan.pl email: bartosz.godziszews tel. 61 665 33 92 tel. 61 665 33 92	ski@put.poznan.pl		
	Wydział Inżynierii Zarządzania		
	ul. Strzelecka 11 60-965 Poznań		
Prerequisites in terms of knowledge, skills and social competencies:			
1 Knowledge Student knows terms and rules of economics. Knows fields of	Student knows terms and rules of economics. Knows fields of operations research in business		
2 Skills Student can work with computer and Excel. Studen has skill of	Student can work with computer and Excel. Studen has skill of basic matrix algebra calculus		
3 Social Student can work in team and prepare project			
Assumptions and objectives of the course:			
C1. Student can model and solve problems of resources input and outputs in business.			
C2. Student knows basics of statistics and optimization methods used in management.			
Study outcomes and reference to the educational results for a field of study			
Knowledge:			
1. Student knows operations problem in management, decisions, objectives and constraints.			
2. Knows problems of production mix, blend and labor and production planning [K2A_W01]			
3. Knows problems of work assignment, transportation and vehicle routing [K2A_W01]	ma alaaaaa [1/24 \4/22]		
 Differs between continous and descrete decision variable and linear (LP) and other problems classes - [K2A_W22] Student kows multiple-goal programming - [K2A_W13] 			
 6. Student knows OLS metohod of economic parameters estimation [K2A_W13] 			
Skills:			
1. Student can model business operations [K2A_U14]			
2. Can solve a problem using graphical, simplex, network or transport algorithm - [K2A_U10]			
3. Uses computer optimization and estimation software: Solver, Solver Foundation - [K2A_U10]			
4. Can solve multiple-goal problem (metacriterion, degree of realisation or AHP) - [K2A_U10]			
5. Estimates model parametrs using OLS method and GRETL programme - [K2A_U14]			
 6. Can explain and use results of modeling and optimization in management - [K2A_U15] 7. Student by himself studies chosen problems in details - [K2A_U05] 			
Social competencies:			

1. Student is aware of estimation and optimization role in business. - [K2A_K06]

- 2. Promotes estimation and optimization methods in business. [K2A_K03]
- 3. Can work in team for operations optimization in business. [K2A_K03]

Assessment methods of study outcomes Forming mark from: a) lecture on a basis of answer for questions concerning worked over problems, b) exercises on a basis of activness and task solving. Summary mark from: a) lecture and exercises on a basis of written test of task solving and theory **Course description** 1. Optimization models classyfication. Formulation of problems of: production mix, blend, technology process plan, labor and production planning, transportation and assignment. 2. Simplex method. 3. Multi-goal continous models. Graphical, Pareto-effective, metacriterion and hierarchy methods. 4. Multiple-goal descrete model of supplier selection (metacriterion-point scale, degree of realisation or AHP). 5. Network. Critical parth method (CPM) in analysis of project time or cost. Gantt?s time schedule. 6. Transportation problems: balanced, unbalanced, indirect and resaler problem. 7. Dynamic programming. Routing and resource allocation problem. 8. Nonlinear programming. Nonlinear evenue function: conditional optimization and Kuhn-Tucker conditions. Portolio analysis. 9. Decision uncertainty.Basics of games theory. 10. Decision risk. Decision tree, optimum supply problem, optimum stock quantity. 11. Idea of heuristic methods: genetic algorithm. **Basic bibliography:**

1. Badania operacyjne, Sikora W. (red.), PWE, Warszawa 2008.

2. Brzęczek T., Gaspars-Wieloch H., Godziszewski B., Podstawy badań operacyjnych i ekonometrii, Wydawnictwo PP, Poznań 2010.

3. Józefowska J., Badania operacyjne i teoria optymalizacji, Wydawnictwo PP, Poznań 2011.

4. Kufel T., Ekonometria. Rozwiązywanie problemów z wykorzystaniem programu GRETL, WN PWN, Warszawa 2011.

5. Przykłady i zadania z badań operacyjnych i ekonometrii, Sikora W. (red.), Wyd. UEP, seria MD 163, Poznań 2005.

Additional bibliography:

1. Anholcer M., Gaspars H., Owczarkowski A., Ekonometria z Excelem Wyd. UEP, Poznań 2010.

2. Balakrishnan N., Render B., Stair R.M., Managerial Decision Modeling with Spreadsheets, Prentice Hall 2007

3. Ekonometria i badania operacyjne. Zagadnienia podstawowe, Guzik B. (red.), Wydawnictwo Akademii Ekonomicznej w Poznaniu, Poznań 2003.

4. Trzaskalik T., Wprowadzenie do badań operacyjnych z komputerem - CD, PWE, Warszawa 2008.

5. Węglarz J., Modelowanie i optymalizacja. Badania operacyjne i systemowe, Exit, Warszawa 2003.

6. Witkowska D., Podstawy ekonometrii i teorii prognozowania, Oficyna Ekonomiczna, Kraków 2006.

Result of average student's workload

Activity		Time (working hours)
1. Lectures		16
2. Exercises		14
3. Consultation		30
4. Student's own work		40
Student's wo	rkload	
Source of workload	hours	ECTS
Total workload	100	4
Contact hours	60	3
Practical activities	30	2